CTrend Performance Simulation Software for API617 Process Centrifugal Compressors

Summary

- Introduction
- Modeling Process & Software Description
- Benchmarking & Demo (Case Study)

Introduction

Illustration of Existing Compressor

Photo: Siemens Energy

Reference Compressor Map (provided by Vendor as part of Databook)

Introduction

Centrifugal compressor map is dependent upon inlet conditions

Changes in field conditions, gas composition etc.

Compressor operating @ REFERENCE conditions Compressor operating @ NEW conditions

Introduction

- Tandem Train / Multi-Casing & Back-to-Back Compressors
- Changed Field Conditions and Gas Composition
- Higher Pressures (Compressibility ↗↗)

Inlet conditions P1, T1, MW

Outlet conditions P2, T2, MW Shaft power Ctrend simulates performance output @ new conditions based on reference map information

STEP 1

Obtain existing compressor process data and impellers information (datasheet)

Obtain existing compressor map (convert in tabular format)

Define design condition and speed

STEP 2

Enter data into CTrend and generate automatically a so-called thermodynamic signature of the existing compressor section

STEP 3

Simulate off-design and new conditions performance

CTrend				
Project Programs Help				
ъ 🕆 🗖 ଟ 🔊 🖉 🖉 ଟ 🔁	<u></u>	INTERINALS	🧖 唱 🕾 👋 🕨 🕨	
	-Stage PS1 -			
Process Section	D2 mm	Alternative Corres Baff OD	Malas Faratian (Mal. 9/)	
~	1 355 👻	Alternative Case: Rer_OP	Molar Fraction (Mol. %)	
	2 355 💌	Search Criterion	Nitrogen 0	
	3 355 👻	Speed ~	Carbon Dioxide 0	
□··· ☑ ﷺ Process Case	4 355 💌		Ethane 0.38	
⊥ Design ⊥ N2	5 355 💌	Inlet Pressure 14.53 MPa-a	Propane 0.61	
	6 355 -	Inlet Temperature 317.15 K	Isobutane 0.12	
	7 🔹	Massflow 45556 kg/h	n-Pentane 0.011	
	8 🔻	Outlet Pressure 17.21 MPa-a	Isopentane 0.059	
	9 - 🔻	Shaft Speed BY PROG. RPM	n-Hexane 0.14	
	10	Mol. Weight 2.969 g/mol	n-Heptane 0	
	11		n-Nonane 0	
		·	n-Decane 0	
	-Train	1	Hydrogen 97.06	
			Oxygen 0	
□ [100%=12597 RPM]	DRIVER		Vater 0.07	
Curve No.2 (90%)	COUPLING		Hydrogen Sulfide 0.002	
	PS1		Helium 0	
			Argon 0	
			Sum %	
			Normalize	
Filename , Advanced C DA pri				
Filename: AdvancerHC_PA.prj				

CTrend						—	I X	
Project Programs Help								
ზ Ⴊ 🗖 🗟 🖉 🖉 🗖 🍺	∑ 🔜				🧖 嬉 👁	×9 🗘 🕨 🚺		»
Process Section	Stage - PS1 D2 mm 1 450 ▼ 2 450 ▼ 3 450 ▼	OEM Tabul Variables	enerate Thermodyna ated Map Parametr	mic Signature ers Selection Mode (HPol., Etap) vs. Vol.	Flow	~	7	OEM REFERENCE MAP DATA
	40 450 ▼ 5 ▼ 6 ▼ 7 ▼ 8 ▼ 9 ▼ 10 ▼ 11 ▼	Design s RPM 11222	Inlet Flow Am3/h 7128.6 7197.24 7401.08 7600.77 7798.38 8000.14 8199.83 8399.51 8601.28 8803.04 8998.57 9200.34	Polytropic Head kJ/kg 145.348 145.348 145.069 144.459 143.857 143.249 142.217 140.939 139.414 137.639 132.293 127.563	Polytropic Efficiency % 72.619 72.777 73.753 74.26 74.553 74.831 75.062 75.33 74.927 75.33 74.153 74.153	Condition Basis Design		
Speed Curves		11222 11222.01 11222.01 11222.01 11222.01 11222.01 11222.01 11222.01 11222.01 11222.01 11222.01 11222.01 11222.01 11222.01	9402.1 9499.86 5573.85 5798.12 5999.29 6200.47 6398.35 6596.23 6800.71 6998.59 7196.47 7397.64 7493.29 7511.86	118.652 113.528 140 138.493 136.991 134.97 132.158 129.55 126.31 121.901 116.714 109.409 105.415 145.765	71.709 70.15 71.951 72.494 72.989 73.1 73.12 73.079 72.982 72.133 71.078 69.061 67.908 72.707	Design Design CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1 CASE1		

Prime mover	MODBUS & Sampling Settings	- 🗆 X	B	1	ModRSim	2 Filter 🔿	Scan Only	Scan+F	redict			
Turbine Compressor	Protocol	TCP/IP 🗸										
	Format	WORD16+ V	Sca	n Status	5							
	Server Unit ID	1	Stopped									
Scrubber	First Register	300001 🗸	And	- T 1-								
	Timeout (Second)	2	Analog Inputs Plot Setup Log Data									
	TCP/IP Units									-		
UIC	Server IP Address	127.0.0.001	Pr	essure	MPa-a 🗸 Te	emperature K		✓ Flo	w kg/h		~	
ANTI SURGE CONTROLLER	Server Port	502				1		1				
	RTU/ASCII		ID	Tag	Description	Address	Data Low	/ Data High	EU Low	EU High	PS	
	Parity	NONE	1		FLOW	300001	0	65535		1		
$\mathbf{A}_{\mathbf{A}}$	Port (COM)	1	3		SUCTION TEMPERATURE	300003	0	65535		1		
	Port (Conj)		4		DISCHARGE PRESSURE	300004	0	65535		1		
·	Baud Rate	9600	5	_	DISCHARGE TEMPERATURE	300005	0	65535		1		
	Stop Bits	1	6		SHAFT SPEED	300006	0	65535		1		
	Scanning Settings											
Manitaring	Screen Buffer Size (No. Sample)	100										
ivionitoring	Scan Delay (T1) (>= 1 sec)	5 Second V										
	Signal Averaging											
& Irending	No. Sample	1										
	Scan Interval (mSecond)	100	PS	Mixtur	re Map Basis	Speed R	atio% T	hreshold R. Ratio%	Threshold	Three	shol	
	Filter (ModRSsim2 Simulator)		1	Design	Design	100	0.5	Kindbo 70	0.5	0.5	ET 70	
	Interval (mSecond)	100										
	Constant	1E-7										
			<								>	
	Apply Cancel											

CONFIGURATIO

Benchmarking & Demo (Case Study)

Benchmarking

- NIST Data (US Institute of Standards and Technology)
- GASCALC Software

CTrend Case Study

Fixed speed machine application

Utilities Demonstration

- NACE risk analysis tool
- QHmap tool
- GERG head calculation tool